organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Peter N. Horton,^a* Michael B. Hursthouse,^a Michael A. Beckett^b and Martin P. Rugen-Hankey^b

^aSchool of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, England, and ^bChemistry Department, University of Wales, Bangor, LL57 2UW, Wales

Correspondence e-mail: pnh@soton.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.003 Å R factor = 0.044 wR factor = 0.116 Data-to-parameter ratio = 12.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Pentafluorophenylboronic acid

Crystals of the title compound, $C_6F_5B(OH)_2$, were obtained from an attempted recrystallization of $(C_6F_5)_3B_3O_3$ ·Et₃PO from THF/hexane solution. The central B atom of the boronic acid has a trigonal planar configuration with two hydroxyl groups and one pentafluorphenyl substituent.

Comment

There has been much recent interest in the chemistry of perfluoroarylboron compounds owing to their use as Lewis acid catalysts in organic transformations (Piers & Chivers, 1997; Ishihara & Yamamoto, 1999). We have recently explored the chemistry of phosphoryl donors towards $B(C_6F_5)_3$ (Beckett et al., 2000, 2001) and are now examining the related boroxine, $(C_6F_5)_3B_3O_3$. The adduct $(C_6F_5)_3B_3O_3$ ·Et₃PO, (1), is readily obtained from the stoichiometric reaction of Et₃PO with $(C_6F_5)_3B_3O_3$ in THF solution. Compound (1), a colourless solid which gave satisfactory elemental analysis data, was characterized by IR and NMR spectroscopy. The strongly Lewis acidic nature of $(C_6F_5)_3B_3O_3$ is reflected in the ³¹P chemical shift of (1), which is considerably downfield of that of free Et₃PO (Mayer et al., 1975). An attempted recrystallization of (1), by slow diffusion of hexane into a THF solution of the compound, afforded crystals of the title compound $(C_6F_5)B(OH)_2$, (2). Presumably, (2) arose as a consequence of hydrolysis of (1), caused by H₂O in our recrystallization solvents. Compound (2) is well documented in the literature (Chambers & Chivers, 1965; Frohn et al., 2002), but its crystal and molecular structure has not been previously reported.

Crystallographic studies on compounds which contain a similar (C_6F_5)BO₂ motif are limited to the cyclic pentafluorophenylboronic acid ester of 2,3-dihydroxynaphthalene, (C_6F_5)BO₂C₁₀H₆ (Vagedes *et al.*, 1999) and the metallocycle [ZrCp₂{ μ -O₂B(C_6F_5)}]₂ (Balkwill *et al.*, 2002). The motif also appears in the borate anion of the salt [CpNi(C_6H_6)NiCp]-[B₃O₃(C_6F_5)₅] (Priego *et al.*, 2000), in which there are B atoms with both trigonal and tetrahedral geometry. The cyclic trimeric borinic acid derivative [{(C_6F_5)₂B(OH)}₃] contains

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved Received 5 August 2004 Accepted 9 September 2004

Online 6 November 2004

Figure 1

View of the structure of $(C_6F_5)B(OH)_2$, showing the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

the $C_6F_5BO_2$ motif with tetrahedral boron (Beringhelli *et al.*, 2003).

B and C atoms are essentially trigonal planar and most of the B-O, B-C, and C-F bond lengths are unremarkable, with structural data for the $C_6F_5BO_2$ motif similar to those previously reported. Bond angles at B and C are consistent with sp^2 hybridization but with significant deviations from the expected 120° angles occurring in close proximity to the $B(OH)_2$ substituent on C1. Thus the angles C6-C1-C2 $[115.31 (16)^{\circ}], F1-C2-C3 [116.81 (17)^{\circ}] and F5-C6-C5$ $[117.20 (16)^{\circ}]$ are significantly smaller than the other C–C– C and C-C-F angles respectively. The $B(OH)_2$ group is twisted by 38.14 (15)° relative to the C_6F_5 group. The B-O distances are equivalent and average 1.359 Å, consistent with relatively strong π -interactions and a bond order >1 (Beckett *et al.*, 1996). Conversely, the C1–B1 bond length [1.579 (3) Å] is slightly greater than that typically found in boroxines e.g. (4- MeC_6H_4)₃B₃O₃, 1.543 (4) Å (Beckett *et al.*, 1996), indicating a weakening of this bond by the electron-withdrawing C_6F_5 group. The H atoms were located and H–O–B angles and H-O distances average 113.3° and 0.855 Å, respectively. Both H atoms are involved in hydrogen bonds, H2O in a hydrogenbond dimer (equivalent to the carboxylic acid dimer) and H1O in an extended tape (see Fig. 2), which combine, giving a twodimensional extended structure.

Experimental

To a stirred solution of $(C_6F_5)_3B_3O_3$ (0.50 g, 0.86 mmol) in THF (25 cm³) was added Et₃PO (0.12 g; 0.89 mmol). The reaction mixture was stirred at room temperature for 1 h. Removal of volatiles *in vacuo* afforded the adduct $(C_6F_5)_3B_3O_3 \cdot \text{Et}_3PO$, (1), a colourless solid (0.58 g; 94%). NMR (δ /p.p.m.; C_6D_6/RT): ¹H (500.1 MHz): 1.4 (*q*, 6H, ³*J* 6.6 Hz), 0.7 (*t*, 9H, ³*J* 6.6 Hz); ³¹P (202.4 MHz): +80.0; { $\Delta\delta = 39.0$ p.p.m., AN (acceptor number) = 86 (Mayer *et al.*, 1975)}. IR (KBr disc, $\eta_{\text{max}} \text{ cm}^{-1}$): 3385 (*m*), 2984 (*m*), 1649 (*s*), 1486 (*s*), 1340 (*s*), 1244 (*s*), 1100 (*s*), 976 (*s*), 935 (*m*), 781 (*m*). Elemental analysis (%) required for $C_{24}H_{15}B_3F_{15}PO_4$: C 40.3, H 2.1; Found: C, 40.2, H 2.0%. A few crystals of $C_6F_5B(OH)_2$, (2), suitable for X-ray diffrac-

Figure 2 View showing hydrogen bonding (dashed lines).

tion, were grown by slow (14 days) diffusion of hexane into a THF solution of (1).

Crystal data				
C ₆ H ₂ BF ₅ O ₂ $M_r = 211.89$ Monoclinic, $P2_1/c$ a = 12.6214 (6) Å b = 6.2949 (2) Å c = 9.3973 (4) Å $\beta = 98.254$ (2)° V = 738.89 (5) Å ³ Z = 4	$D_x = 1.905 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 1621 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$ T = 120 (2) K Plate, colourless $0.15 \times 0.08 \times 0.02 \text{ mm}$			
Data collection				
Nonius Kappa CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SORTAV; Blessing, 1997) $T_{min} = 0.968, T_{max} = 0.996$ 5560 measured reflections	1692 independent reflections 1186 reflections with $>2\sigma(I)$ $R_{int} = 0.070$ $\theta_{max} = 27.5^{\circ}$ $h = -16 \rightarrow 14$ $k = -8 \rightarrow 6$ $l = -10 \rightarrow 12$			
Refinement				
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.116$ S = 1.03 1692 reflections 135 parameters	All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0634P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.27 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.31 \text{ e } \text{Å}^{-3}$			
Table 1				
Hydrogen-bonding geometry (A, °).				

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O2-H2O\cdotsO1^{i}$ $O1-H1O\cdotsO2^{ii}$	0.92 (3) 0.82 (3)	1.81 (3) 1.99 (3)	2.7326 (18) 2.7653 (19)	176 (2) 160 (2)
6 ()	4 .	(1) 1	1	

Symmetry codes: (i) -x, -1 - y, -z; (ii) x, $-\frac{1}{2} - y$, $z - \frac{1}{2}$.

Data collection: *COLLECT* (Hooft, 1998) and *DENZO* (Otwinowski & Minor, 1997); cell refinement: *DENZO* and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank the EPSRC for funding the crystallographic facilities.

References

- Balkwill, J. E., Cole, S. C., Coles, M. P. & Hitchcock, P. B. (2002) *Inorg. Chem.* **41**, 3548–3552.
- Beckett, M. A., Brassington, D. S., Coles, S. J. & Hursthouse, M. B. (2000) Inorg. Chem. Commun. 3, 530–533.
- Beckett, M. A., Brassington., D. S., Light, M. E. & Hursthouse, M. B. (2001). J. Chem. Soc. Dalton Trans. pp. 1768–1772.
- Beckett, M. A., Strickland, G. C., Varma, K. S., Hibbs, D. E., Hursthouse, M. B. & Malik, K. M. A (1996). J. Organomet. Chem. 535, 33–41.
- Beringhelli, T., D'Alfonso, G., Donghi, D., Maggioni, D., Mercandelli, P. & Sironi, A. (2003) Organometallics, 22, 1588–1590.
- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.

- Chambers, R. N. & Chivers, T. (1965). J. Chem. Soc. pp. 3933-3939.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Frohn, H.-J., Adonin, N. Y., Bardin, V. V. & Starichenko, V. F. (2002). Z. Anorg. Allg. Chem. 628, 2827–2833.
- Hooft, R. (1998). COLLECT. Nonius BV, The Netherlands.
- Ishihara, K. & Yamamoto, H. (1999). Eur. J. Org. Chem. pp. 527-538.
- Mayer, U., Gutmann, V. & Gerger, W. (1975). Monatash. Chem. 106, 1275– 1257.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
- Piers, W. E. & Chivers, T. (1997). Chem. Soc. Rev. 26, 345-354.
- Priego, J. L., Doerrer, L. H., Rees, L. H. & Green, M. L. H. (2000) Chem. Commun. pp. 779–780.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Vagedes, D., Frohlich, R. & Erker, G. (1999). Angew. Chem. Int. Ed. Engl. 38, 3362–3365.