Structure Reports

Online
ISSN 1600-5368

Peter N. Horton, ${ }^{\text {a* }}$

Michael B. Hursthouse, ${ }^{\text {a }}$
Michael A. Beckett ${ }^{\text {b }}$ and
Martin P. Rugen-Hankey ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, England, and ${ }^{\mathbf{b}}$ Chemistry Department, University of Wales, Bangor, LL57 2UW, Wales

Correspondence e-mail: pnh@soton.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.044$
$w R$ factor $=0.116$
Data-to-parameter ratio $=12.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Pentafluorophenylboronic acid

Crystals of the title compound, $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{~B}(\mathrm{OH})_{2}$, were obtained from an attempted recrystallization of $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{~B}_{3} \mathrm{O}_{3} \cdot \mathrm{Et}_{3} \mathrm{PO}$ from THF/hexane solution. The central B atom of the boronic acid has a trigonal planar configuration with two hydroxyl groups and one pentafluorphenyl substituent.

Comment

There has been much recent interest in the chemistry of perfluoroarylboron compounds owing to their use as Lewis acid catalysts in organic transformations (Piers \& Chivers, 1997; Ishihara \& Yamamoto, 1999). We have recently explored the chemistry of phosphoryl donors towards $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ (Beckett et al., 2000, 2001) and are now examining the related boroxine, $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{~B}_{3} \mathrm{O}_{3}$. The adduct $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{~B}_{3} \mathrm{O}_{3} \cdot \mathrm{Et}_{3} \mathrm{PO}$, (1), is readily obtained from the stoichiometric reaction of $\mathrm{Et}_{3} \mathrm{PO}$ with $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{~B}_{3} \mathrm{O}_{3}$ in THF solution. Compound (1), a colourless solid which gave satisfactory elemental analysis data, was characterized by IR and NMR spectroscopy. The strongly Lewis acidic nature of $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{~B}_{3} \mathrm{O}_{3}$ is reflected in the ${ }^{31} \mathrm{P}$ chemical shift of (1), which is considerably downfield of that of free $\mathrm{Et}_{3} \mathrm{PO}$ (Mayer et al., 1975). An attempted recrystallization of (1), by slow diffusion of hexane into a THF solution of the compound, afforded crystals of the title compound $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{B}(\mathrm{OH})_{2}$, (2). Presumably, (2) arose as a consequence of hydrolysis of (1), caused by $\mathrm{H}_{2} \mathrm{O}$ in our recrystallization solvents. Compound (2) is well documented in the literature (Chambers \& Chivers, 1965; Frohn et al., 2002), but its crystal and molecular structure has not been previously reported.

(2)

Crystallographic studies on compounds which contain a similar $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{BO}_{2}$ motif are limited to the cyclic pentafluorophenylboronic acid ester of 2,3-dihydroxynaphthalene, $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{BO}_{2} \mathrm{C}_{10} \mathrm{H}_{6}$ (Vagedes et al., 1999) and the metallocycle $\left[\mathrm{ZrCp}_{2}\left\{\mu-\mathrm{O}_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right\}\right]_{2}$ (Balkwill et al., 2002). The motif also appears in the borate anion of the salt $\left[\mathrm{CpNi}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{NiCp}\right]-$ $\left[\mathrm{B}_{3} \mathrm{O}_{3}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{5}\right]$ (Priego et al., 2000), in which there are B atoms with both trigonal and tetrahedral geometry. The cyclic trimeric borinic acid derivative $\left[\left\{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{~B}(\mathrm{OH})\right\}_{3}\right]$ contains

Received 5 August 2004
Accepted 9 September 2004 Online 6 November 2004

Figure 1
View of the structure of $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{B}(\mathrm{OH})_{2}$, showing the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
the $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{BO}_{2}$ motif with tetrahedral boron (Beringhelli et al., 2003).
B and C atoms are essentially trigonal planar and most of the $\mathrm{B}-\mathrm{O}, \mathrm{B}-\mathrm{C}$, and $\mathrm{C}-\mathrm{F}$ bond lengths are unremarkable, with structural data for the $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{BO}_{2}$ motif similar to those previously reported. Bond angles at B and C are consistent with $s p^{2}$ hybridization but with significant deviations from the expected 120° angles occurring in close proximity to the $\mathrm{B}(\mathrm{OH})_{2}$ substituent on C 1 . Thus the angles $\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$ [115.31 (16) $)^{\circ}$, F1-C2-C3 [116.81 (17) ${ }^{\circ}$] and F5-C6-C5 [117.20 (16) $)^{\circ}$] are significantly smaller than the other $\mathrm{C}-\mathrm{C}-$ C and $\mathrm{C}-\mathrm{C}-\mathrm{F}$ angles respectively. The $\mathrm{B}(\mathrm{OH})_{2}$ group is twisted by 38.14 (15) ${ }^{\circ}$ relative to the $\mathrm{C}_{6} \mathrm{~F}_{5}$ group. The $\mathrm{B}-\mathrm{O}$ distances are equivalent and average $1.359 \AA$, consistent with relatively strong π-interactions and a bond order >1 (Beckett et al., 1996). Conversely, the C1-B1 bond length [1.579 (3) Å] is slightly greater than that typically found in boroxines e.g. (4$\left.\mathrm{MeC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{~B}_{3} \mathrm{O}_{3}, 1.543$ (4) \AA (Beckett et al., 1996), indicating a weakening of this bond by the electron-withdrawing $\mathrm{C}_{6} \mathrm{~F}_{5}$ group. The H atoms were located and $\mathrm{H}-\mathrm{O}-\mathrm{B}$ angles and $\mathrm{H}-\mathrm{O}$ distances average 113.3° and $0.855 \AA$, respectively. Both H atoms are involved in hydrogen bonds, H 2 O in a hydrogenbond dimer (equivalent to the carboxylic acid dimer) and H 1 O in an extended tape (see Fig. 2), which combine, giving a twodimensional extended structure.

Experimental

To a stirred solution of $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{~B}_{3} \mathrm{O}_{3}(0.50 \mathrm{~g}, 0.86 \mathrm{mmol})$ in THF $\left(25 \mathrm{~cm}^{3}\right)$ was added $\mathrm{Et}_{3} \mathrm{PO}(0.12 \mathrm{~g} ; 0.89 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 1 h . Removal of volatiles in vacuo afforded the adduct $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{~B}_{3} \mathrm{O}_{3} \cdot \mathrm{Et}_{3} \mathrm{PO}$, (1), a colourless solid $(0.58 \mathrm{~g} ; 94 \%)$. NMR ($\delta /$ p.p.m.; $\left.\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{RT}\right):{ }^{1} \mathrm{H}(500.1 \mathrm{MHz}): 1.4(q, 6 \mathrm{H}$, $\left.{ }^{3} J 6.6 \mathrm{~Hz}\right), 0.7\left(t, 9 \mathrm{H},{ }^{3} \mathrm{~J} 6.6 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}(202.4 \mathrm{MHz}):+80.0 ;\{\Delta \delta=39.0$ p.p.m., AN (acceptor number) $=86$ (Mayer et al., 1975) \}. IR (KBr disc, $\eta_{\text {max }} \mathrm{cm}^{-1}$): $3385(m), 2984(m), 1649(s), 1486(s), 1340(s), 1244$ (s), $1100(s), 976(s), 935(m), 781(m)$. Elemental analysis (\%) required for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~B}_{3} \mathrm{~F}_{15} \mathrm{PO}_{4}$: C 40.3, H 2.1; Found: C, 40.2, H 2.0%. A few crystals of $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{~B}(\mathrm{OH})_{2}$, (2), suitable for X-ray diffrac-

Figure 2
View showing hydrogen bonding (dashed lines).
tion, were grown by slow (14 days) diffusion of hexane into a THF solution of (1).

Crystal data
$\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{BF}_{5} \mathrm{O}_{2}$
$M_{r}=211.89$
Monoclinic, $P 2_{1} / c$
$a=12.6214$ (6) \AA
$b=6.2949$ (2) A
$c=9.3973$ (4) \AA
$\beta=98.254(2)^{\circ}$
$V=738.89(5) \AA^{3}$
$Z=4$

Data collection

Nonius Kappa CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SORTAV; Blessing, 1997)
$T_{\text {min }}=0.968, T_{\text {max }}=0.996$
5560 measured reflections

Refinement

Refinement on F^{2}
$D_{x}=1.905 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1621
reflections
$\theta=2.9-27.5^{\circ}$
$\mu=0.22 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Plate, colourless
$0.15 \times 0.08 \times 0.02 \mathrm{~mm}$

1692 independent reflections
1186 reflections with $>2 \sigma(I)$
$R_{\text {int }}=0.070$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-16 \rightarrow 14$
$k=-8 \rightarrow 6$
$l=-10 \rightarrow 12$

All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0634 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.27 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.31 \mathrm{e}^{-3}$
1692 reflections
135 parameters

Table 1

Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H2O $\cdots \mathrm{O}^{\mathrm{i}}$	$0.92(3)$	$1.81(3)$	$2.7326(18)$	$176(2)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{H} 1 \mathrm{O} \cdots \mathrm{O}^{\mathrm{ii}}$	$0.82(3)$	$1.99(3)$	$2.7653(19)$	$160(2)$

Symmetry codes: (i) $-x,-1-y,-z$; (ii) $x,-\frac{1}{2}-y, z-\frac{1}{2}$.

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski \& Minor, 1997); cell refinement: DENZO and COLLECT; data reduction: $D E N Z O$ and $C O L L E C T$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

organic papers

The authors thank the EPSRC for funding the crystallographic facilities.

References

Balkwill, J. E., Cole, S. C., Coles, M. P. \& Hitchcock, P. B. (2002) Inorg. Chem. 41, 3548-3552.
Beckett, M. A., Brassington, D. S., Coles, S. J. \& Hursthouse, M. B. (2000) Inorg. Chem. Commun. 3, 530-533.
Beckett, M. A., Brassington., D. S., Light, M. E. \& Hursthouse, M. B. (2001). J. Chem. Soc. Dalton Trans. pp. 1768-1772.
Beckett, M. A., Strickland, G. C., Varma, K. S., Hibbs, D. E., Hursthouse, M. B. \& Malik, K. M. A (1996). J. Organomet. Chem. 535, 33-41.
Beringhelli, T., D’Alfonso, G., Donghi, D., Maggioni, D., Mercandelli, P. \& Sironi, A. (2003) Organometallics, 22, 1588-1590.
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.

Chambers, R. N. \& Chivers, T. (1965). J. Chem. Soc. pp. 3933-3939.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Frohn, H.-J., Adonin, N. Y., Bardin, V. V. \& Starichenko, V. F. (2002). Z. Anorg. Allg. Chem. 628, 2827-2833.
Hooft, R. (1998). COLLECT. Nonius BV, The Netherlands.
Ishihara, K. \& Yamamoto, H. (1999). Eur. J. Org. Chem. pp. 527-538.
Mayer, U., Gutmann, V. \& Gerger, W. (1975). Monatash. Chem. 106, 12751257.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Piers, W. E. \& Chivers, T. (1997). Chem. Soc. Rev. 26, 345-354.
Priego, J. L., Doerrer, L. H., Rees, L. H. \& Green, M. L. H. (2000) Chem. Comтй. pp. 779-780.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Vagedes, D., Frohlich, R. \& Erker, G. (1999). Angew. Chem. Int. Ed. Engl. 38, 3362-3365.

[^0]: (C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

